Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

catena-Poly[aquacopper(II)-μ-[N-(1-oxido-2-naphthylmethylene)-glycinato- $\left.\left.O, N, O^{\prime}: O^{\prime}\right]\right]$

Waldemar Maniukiewicz* and Maria BukowskaStrzyżewska

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland
Correspondence e-mail: waldemar@ck-sg.p.lodz.pl

Received 1 March 2001
Accepted 9 April 2001
In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, the $\mathrm{Cu}^{\mathrm{II}}$ ion is in a slightly distorted square-pyramidal environment, with four short bonds in the basal plane formed by three donor atoms of the Schiff base and a water O atom. A symmetryrelated neighbouring molecule provides an apical carboxylate O atom at a distance of 2.551 (3) \AA; this contact leads to the formation of zigzag polymeric chains. In addition, the chain fragments are connected to each other by hydrogen bonding.

Comment

Metal complexes of amino-acid Schiff bases have attracted attention as models for vitamin B_{6} and its analogues in catalyzed non-enzymatic transamination reactions in solution (Metzler et al., 1954; Longenecker \& Snell, 1957). The general model assumes transfer of charge density from the α-C region of the amino-acid residue toward the more electronegative pyridine N atom. The metal atom can act as a catalyst by promoting the formation of a Schiff base and maintaining the planarity of the conjugated system by means of the formation of a chelate. Moreover, the metal ion increases the withdrawal of electrons from the α-C region. Several X-ray structural studies of copper complexes of amino-acid Schiff bases have been published so far (Ueki et al., 1967, 1968, 1969; BkoucheWaksman et al., 1988; Warda et al., 1996; Warda, 1997). The present paper describes a new example, the title compound,

(I)
(I), which illustrates a different way of generating the polymeric chain (through the other carboxylic O atom) than that
found in [aqua(N-salicylideneglycinato)]copper(II) hemihydrate (Bkouche-Waksman et al., 1988), (II).
The $\mathrm{Cu}^{\mathrm{II}}$ ion in (I) is five-coordinated (Table 1 and Fig. 1) in the form of a slightly distorted square pyramid, with the basal atoms being $\mathrm{O} 1, \mathrm{O} 2$ and N 1 of the Schiff base and O 3 of the water molecule. The apical $\mathrm{O} 2^{i}$ atom [symmetry code: (i) x, $\left.-y, \frac{1}{2}+z\right]$ of a neighbouring molecule completes the coordination. The τ parameter of Addison et al. (1989) indicates a 7.5% trigonal-bipyramidal distortion. The basal atoms deviate by up to 0.039 (4) \AA from their least-squares plane and the $\mathrm{Cu}^{\text {II }}$ ion is displaced by 0.099 (1) \AA towards the apical donor.

The apical $\mathrm{Cu}-\mathrm{O}_{2}^{\mathrm{i}}$ bond [2.551 (3) \AA] is long compared with the corresponding bond in (II) [2.308 (1) \AA] and links the molecules to form polymeric chains propagated along the c axis (Fig. 2). In these chains, $\mathrm{Cu} \cdots \mathrm{Cu}$ distances of 3.916 (1) and 5.940 (1) \AA are found between nearest-neighbour (c-glide related) and cell-translated $\mathrm{Cu}^{\mathrm{II}}$ ions, respectively. The $\mathrm{Cu}-$ O 1 and $\mathrm{Cu}-\mathrm{O} 2$ bond lengths [1.909 (4) and 1.951 (3) \AA, respectively] are consistent with there being more negative charge on the phenolic O 1 atom than on the carboxylate O 2 atom, as noted by Capasso et al. (1974) and others.

The bond distances at C12, the α-C implicated in the catalytic activity of such complexes (see, for example, BkoucheWaksman et al., 1988), i.e. $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ and $\mathrm{C}_{\alpha}-\mathrm{N}$, are 1.505 (7) and 1.460 (6) \AA, respectively, in the present study, compared with 1.526 (1) and 1.455 (1) \AA in (II). In the carboxylate group, only O 2 coordinates to the Cu atom, while O 4 participates in hydrogen-bond formation (see below and Table 2). The resulting difference in C-O distances of 0.044 (6) \AA is considerably larger than in (II), α-glycine (Legros \& Kvick, 1980) or χ-glycine (Kvick et al., 1980), with values of 0.022 (1), 0.002 (1) and 0.008 (1) \AA, respectively.

As expected, the Cu coordination renders the $\mathrm{C} 12 / \mathrm{N} 1 / \mathrm{C} 11 /$ $\mathrm{C} 1 / \mathrm{C} 2$ conjugated system planar (within 2.5σ). The sixmembered $\mathrm{Cu} 1 / \mathrm{O} 1 / \mathrm{C} 2 / \mathrm{C} 1 / \mathrm{C} 11 / \mathrm{N} 1$ chelate ring is, however, only approximately planar (within 7σ). The naphthalene rings are planar within 2.5σ, with an angle of $1.4(3)^{\circ}$ between them.

Figure 1
The structure of (I) with the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

The chelate ring and the condensed naphthalene ring make an angle of $4.9(2)^{\circ}$. The bonds and angles within the naphthalene moiety are in the ranges 1.348 (8)-1.452 (7) \AA and 117.5 (5)$123.1(5)^{\circ}$, respectively.

The formation of chains and the packing of the molecules results in close intermolecular $\mathrm{O} 4 \cdots \mathrm{C} 13^{\mathrm{ii}}$ and $\mathrm{C} 5 \cdots \mathrm{C} 11^{\text {iii }}$ contacts [3.029 (6) and 3.295 (8) \AA, respectively; symmetry codes: (ii) $x,-y, z-\frac{1}{2}$; (iii) $\left.x, y, 1+z\right]$. Both H atoms of the water molecule participate in hydrogen-bond formation (Table 2). The bond to O 1 occurs within the polymeric chains (Fig. 1), but that to O 4 occurs between chains, linking them into sheets parallel to [010].

Figure 2
The polymeric association of (I).

Experimental

An ethanol solution (50 ml) of glycine ($1 \mathrm{mmol}, 0.07 \mathrm{~g}$) and 2-hy-droxy-1-naphthaldehyde ($1 \mathrm{mmol}, 0.17 \mathrm{~g}$) was kept at 343 K in a reflux condenser for 30 min . An ethanol solution (50 ml) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 0.17 \mathrm{~g})$ was then added, and the temperature readjusted to 343 K and kept constant for 30 min . The resulting darkgreen solution was filtered and allowed to evaporate slowly.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=308.78$
Monoclinic, $C c$
$a=7.043$ (1) \AA
$b=28.741$ (6) \AA
$c=5.940$ (1) A
$\beta=103.06$ (3) ${ }^{\circ}$
$V=1171.3$ (4) \AA^{3}
$Z=4$
$D_{x}=1.751 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.70$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P3 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.723, T_{\text {max }}=0.856$
3771 measured reflections
1735 independent reflections (plus
150 Friedel-related reflections)
1740 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.099$
$S=1.06$
1885 reflections
172 parameters
H -atom parameters constrained
D_{m} measured by measured by flotation in $\mathrm{CH}_{3} \mathrm{I} / \mathrm{CCl}_{4}$

Mo $K \alpha$ radiation

Cell parameters from 15 reflections
$\theta=10-20^{\circ}$
$\mu=1.87 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, dark green
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.034 \\
& \theta_{\max }=30.1^{\circ} \\
& h=-9 \rightarrow 9 \\
& k=-40 \rightarrow 40 \\
& l=-8 \rightarrow 8 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

[^0]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.909(4)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.905(4)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.951(3)$	$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.551(3)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.944(3)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$171.62(15)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$176.23(16)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$86.99(14)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 3$	$86.71(13)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.77(16)$	$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$96.94(14)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$94.53(13)$	$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 2$	$128.7(3)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$94.80(14)$	$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 13$	$113.4(3)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$85.92(15)$	$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{Cu} 1^{\mathrm{ii}}$	$120.24(14)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$93.74(12)$	$\mathrm{Cu} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{C} 13$	$123.3(3)$

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $x,-y, z-\frac{1}{2}$.
Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {iv }}$	0.96	1.73	2.653 (5)	159
$\mathrm{O} 3-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {ii }}$	0.96	1.75	2.654 (5)	154
$\mathrm{O} 3-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 3^{\text {ii }}$	0.96	2.35	3.006 (5)	125

Symmetry codes: (ii) $x,-y, z-\frac{1}{2}$; (iv) $x-1, y, z$.

All H atoms were included at calculated positions and refined using a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O}) ; \mathrm{C}-\mathrm{H}=0.93-0.97 \AA\right]$.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

This work was supported by the Polish State Committee for Scientific Research (KBN) (grant No. 3 T09A 142 15).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1148). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Nagaswara Rao, T., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1989). J. Chem. Soc. Dalton Trans. pp. 1349-1355.

Bkouche-Waksman, I., Barbe, J. M. \& Kvick, Å. (1988). Acta Cryst. B44, 595601.

Capasso, S., Giordano, F., Mattia, C., Mazzarella, L. \& Ripamonti, A. (1974). J. Chem. Soc. Dalton Trans. pp. 2228-2233.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kvick, A., Canning, W. M., Koetzl, T. F. \& Williams, G. J. B. (1980). Acta Cryst. B36, 115-116.
Legros, J. P. \& Kvick, Å. (1980). Acta Cryst. B36, 3052-3059.
Longenecker, J. B. \& Snell, E. E. (1957). J. Am. Chem. Soc. 79, 142-145.
Metzler, D. E., Ikawa, M. \& Snell, E. E. (1954). J. Am. Chem. Soc. 76, 648-652.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1968). Acta Cryst. B24, $1361-$ 1369.

Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1969). Acta Cryst. B25, 328335.

Warda, S. A. (1997). Acta Cryst. C53, 1590-1593.
Warda, S. A., Friebel, C., Sivy, J., Plesch, G. \& Svajlenova, O. (1996). Acta Cryst. C52, 2763-2766.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right.$ $+1.9 P]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\mathrm{m}} \AA^{-3}$
 $\Delta \rho_{\text {min }}=-1.13 \mathrm{e}^{-3}$
 Absolute structure: Flack (1983)
 Flack parameter $=-0.01(2)$

